77 research outputs found

    Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation

    Full text link
    Electronic versíon of an article published as International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 25, 2, 2017, 151-174. DOI:10.1142/S0218488517400165 © copyright World Scientific Publishing Company. https://www.worldscientific.com/worldscinet/ijufks[EN] Online opinions play an important role for customers and companies because of the increasing use they do to make purchase and business decisions. A consequence of that is the growing tendency to post fake reviews in order to change purchase decisions and opinions about products and services. Therefore, it is really important to filter out deceptive comments from the retrieved opinions. In this paper we propose the character n-grams in tokens, an efficient and effective variant of the traditional character n-grams model, which we use to obtain a low dimensionality representation of opinions. A Support Vector Machines classifier was used to evaluate our proposal on available corpora with reviews of hotels, doctors and restaurants. In order to study the performance of our model, we make experiments with intra and cross-domain cases. The aim of the latter experiment is to evaluate our approach in a realistic cross-domain scenario where deceptive opinions are available in a domain but not in another one. After comparing our method with state-of-the-art ones we may conclude that using character n-grams in tokens allows to obtain competitive results with a low dimensionality representation.This publication was made possible by NPRP grant #9-175-1-033 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Cagnina, L.; Rosso, P. (2017). Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 25(2):151-174. https://doi.org/10.1142/S0218488517400165S151174252Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 31(2), 102-107. doi:10.1109/mis.2016.31Cambria, E., & Hussain, A. (2015). Sentic Computing. Cognitive Computation, 7(2), 183-185. doi:10.1007/s12559-015-9325-0Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi:10.1145/1656274.1656278Hancock, J. T., Curry, L. E., Goorha, S., & Woodworth, M. (2007). On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication. Discourse Processes, 45(1), 1-23. doi:10.1080/01638530701739181Hernández Fusilier, D., Montes-y-Gómez, M., Rosso, P., & Guzmán Cabrera, R. (2015). Detecting positive and negative deceptive opinions using PU-learning. Information Processing & Management, 51(4), 433-443. doi:10.1016/j.ipm.2014.11.001Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60. doi:10.1214/aoms/1177730491MONTAÑÉS, E., QUEVEDO, J. R., COMBARRO, E. F., DÍAZ, I., & RANILLA, J. (2007). A HYBRID FEATURE SELECTION METHOD FOR TEXT CATEGORIZATION. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(02), 133-151. doi:10.1142/s0218488507004492Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying Words: Predicting Deception from Linguistic Styles. Personality and Social Psychology Bulletin, 29(5), 665-675. doi:10.1177/0146167203029005010Raudys, S. J., & Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3), 252-264. doi:10.1109/34.75512Wang, G., Xie, S., Liu, B., & Yu, P. S. (2012). Identify Online Store Review Spammers via Social Review Graph. ACM Transactions on Intelligent Systems and Technology, 3(4), 1-21. doi:10.1145/2337542.2337546Webb, G. I. (2000). Machine Learning, 40(2), 159-196. doi:10.1023/a:100765951484

    Particle Swarm Algorithms to solve engineering problems: a comparison of performance

    Get PDF
    In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-function evaluations with respect to the first PSO in the case of fixed threshold tests.Fil: Tomassetti, Giordano. Centro Ricerche Frascati; ItaliaFil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentin

    Multi-objective optimization with a Gaussian PSO algorithm

    Get PDF
    Particle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSOParticle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective problems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems. The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance, an elitist policy, and a shake-mechanism to maintain diversity. In order to validate our algorithm, we use four well-known test functions with different characteristics. Preliminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm representative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a multi-objective PSO based algorithm. The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Strategies to Harness the Transformers' Potential: UNSL at eRisk 2023

    Full text link
    The CLEF eRisk Laboratory explores solutions to different tasks related to risk detection on the Internet. In the 2023 edition, Task 1 consisted of searching for symptoms of depression, the objective of which was to extract user writings according to their relevance to the BDI Questionnaire symptoms. Task 2 was related to the problem of early detection of pathological gambling risks, where the participants had to detect users at risk as quickly as possible. Finally, Task 3 consisted of estimating the severity levels of signs of eating disorders. Our research group participated in the first two tasks, proposing solutions based on Transformers. For Task 1, we applied different approaches that can be interesting in information retrieval tasks. Two proposals were based on the similarity of contextualized embedding vectors, and the other one was based on prompting, an attractive current technique of machine learning. For Task 2, we proposed three fine-tuned models followed by decision policy according to criteria defined by an early detection framework. One model presented extended vocabulary with important words to the addressed domain. In the last task, we obtained good performances considering the decision-based metrics, ranking-based metrics, and runtime. In this work, we explore different ways to deploy the predictive potential of Transformers in eRisk tasks.Comment: In Conference and Labs of the Evaluation Forum (CLEF 2023), Thessaloniki, Greec

    Sobre la Factibilidad del Soporte Factual Externo como Métrica de Calidad para Wikipedia

    Get PDF
    Developing metrics to estimate the information quality of Wikipedia articles is an interesting and important research area. In this article, we propose and analyse the feasibility, of a new quality metric based on the “external factual support” of an article. The rationale behind this metric is identified, a formal definition of the metric is presented and some implementation aspects are introduced. Preliminary results show the feasibility of our proposal and its potential to discriminate high quality versus low quality Wikipedia’s articles.El desarrollo de métricas para estimar la calidad de información de los artículos de Wikipedia es un área de investigación interesante e importante. En este artículo, se propone una nueva métrica de calidad basada en el “soporte factual externo” de un artículo y se analiza su viabilidad. Los motivos que dan sustento a esta métrica son identificados, se presenta una definición formal de la misma y también se dan detalles de su implementación. Los resultados preliminares obtenidos, muestran la viabilidad de nuestra propuesta y su potencial para discriminar entre artículos de alta y baja calidad en Wikipedia

    A particle swarm optimizer for multi-objective optimization

    Get PDF
    This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems.Facultad de Informátic

    Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?

    Full text link
    [EN] Identifying deceptive online reviews is a challenging tasks for Natural Language Processing (NLP). Collecting corpora for the task is difficult, because normally it is not possible to know whether reviews are genuine. A common workaround involves collecting (supposedly) truthful reviews online and adding them to a set of deceptive reviews obtained through crowdsourcing services. Models trained this way are generally successful at discriminating between `genuine¿ online reviews and the crowdsourced deceptive reviews. It has been argued that the deceptive reviews obtained via crowdsourcing are very different from real fake reviews, but the claim has never been properly tested. In this paper, we compare (false) crowdsourced reviews with a set of `real¿ fake reviews published on line. We evaluate their degree of similarity and their usefulness in training models for the detection of untrustworthy reviews. We find that the deceptive reviews collected via crowdsourcing are significantly different from the fake reviews published online. In the case of the artificially produced deceptive texts, it turns out that their domain similarity with the targets affects the models¿ performance, much more than their untruthfulness. This suggests that the use of crowdsourced datasets for opinion spam detection may not result in models applicable to the real task of detecting deceptive reviews. As an alternative method to create large-size datasets for the fake reviews detection task, we propose methods based on the probabilistic annotation of unlabeled texts, relying on the use of meta-information generally available on the e-commerce sites. Such methods are independent from the content of the reviews and allow to train reliable models for the detection of fake reviews.Leticia Cagnina thanks CONICET for the continued financial support. This work was funded by MINECO/FEDER (Grant No. SomEMBED TIN2015-71147-C2-1-P). The work of Paolo Rosso was partially funded by the MISMIS-FAKEnHATE Spanish MICINN research project (PGC2018-096212-B-C31). Massimo Poesio was in part supported by the UK Economic and Social Research Council (Grant Number ES/M010236/1).Fornaciari, T.; Cagnina, L.; Rosso, P.; Poesio, M. (2020). Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?. Language Resources and Evaluation. 54(4):1019-1058. https://doi.org/10.1007/s10579-020-09486-5S10191058544Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61.Banerjee, S., & Chua, A. Y. (2014). Applauses in hotel reviews: Genuine or deceptive? In: Science and Information Conference (SAI), 2014 (pp. 938–942). New York: IEEE.Bhargava, R., Baoni, A., & Sharma, Y. (2018). Composite sequential modeling for identifying fake reviews. Journal of Intelligent Systems,. https://doi.org/10.1515/jisys-2017-0501.Bickel, P. J., & Doksum, K. A. (2015). Mathematical statistics: Basic ideas and selected topics (2nd ed., Vol. 1). Boca Raton: Chapman and Hall/CRC Press.Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory (pp. 92–100). New York: ACM.Cagnina, L. C., & Rosso, P. (2017). Detecting deceptive opinions: Intra and cross-domain classification using an efficient representation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(Suppl. 2), 151–174. https://doi.org/10.1142/S0218488517400165.Cardoso, E. F., Silva, R. M., & Almeida, T. A. (2018). Towards automatic filtering of fake reviews. Neurocomputing, 309, 106–116. https://doi.org/10.1016/j.neucom.2018.04.074.Carpenter, B. (2008). Multilevel bayesian models of categorical data annotation. Retrieved from http://lingpipe.files.wordpress.com/2008/11/carp-bayesian-multilevel-annotation.pdf.Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.Costa, P. T., & MacCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO FFI): Professional manual. Psychological Assessment Resources.Dawid, A. P., & Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, 28(1), 20–28.Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.Elkan, C., & Noto, K. (2008). Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 213–220). New York: ACM.Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., & Ghosh, R. (2013). Exploiting burstiness in reviews for review spammer detection. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media (Vol. 13, pp. 175–184).Feng, S., Banerjee, R., & Choi, Y. (2012). Syntactic stylometry for deception detection. In: Proceedings of the 50th annual meeting of the association for computational linguistics (Vol. 2: Short Papers, pp. 171–175). Jeju Island: Association for Computational Linguistics.Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.Fornaciari, T., & Poesio, M. (2013). Automatic deception detection in Italian court cases. Artificial intelligence and law, 21(3), 303–340. https://doi.org/10.1007/s10506-013-9140-4.Fornaciari, T., & Poesio, M. (2014). Identifying fake amazon reviews as learning from crowds. In: Proceedings of the 14th conference of the European chapter of the Association for Computational Linguistics (pp. 279–287). Gothenburg: Association for Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/E14-1030.Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models., Analytical methods for social research Cambridge: Cambridge University Press.Graves, A., Jaitly, N., & Mohamed, A. R. (2013). Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE workshop on automatic speech recognition and understanding (ASRU) (pp. 273–278). New York: IEEE.Hernández-Castañeda, Á., & Calvo, H. (2017). Deceptive text detection using continuous semantic space models. Intelligent Data Analysis, 21(3), 679–695.Hernández Fusilier, D., Guzmán, R., Móntes y Gomez, M., & Rosso, P. (2013). Using pu-learning to detect deceptive opinion spam. In: Proc. of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 38–45).Hernández Fusilier, D., Montes-y Gómez, M., Rosso, P., & Cabrera, R. G. (2015). Detecting positive and negative deceptive opinions using pu-learning. Information Processing & Management, 51(4), 433–443.Hovy, D. (2016). The enemy in your own camp: How well can we detect statistically-generated fake reviews–an adversarial study. In: The 54th annual meeting of the association for computational linguistics (p 351).Jelinek, F., Lafferty, J. D., & Mercer, R. L. (1992). Basic methods of probabilistic context free grammars. Speech recognition and understanding (pp. 345–360). New York: Springer.Jindal, N., & Liu, B. (2008). Opinion spam and analysis. In: Proceedings of the 2008 international conference on web search and data mining (pp. 219–230). New York: ACM.Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15(9), 1–28.Kim, S., Lee, S., Park, D., & Kang, J. (2017). Constructing and evaluating a novel crowdsourcing-based paraphrased opinion spam dataset. In: Proceedings of the 26th international conference on world wide web (pp. 827–836). Geneva: International World Wide Web Conferences Steering Committee.Li, F., Huang, M., Yang, Y., & Zhu, X. (2011). Learning to identify review spam. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 22(3), 2488–2493.Li, H., Chen, Z., Liu, B., Wei, X., & Shao, J. (2014a). Spotting fake reviews via collective positive-unlabeled learning. In: 2014 IEEE international conference on data mining (ICDM) (pp. 899–904). New York: IEEE.Li, H., Fei, G., Wang, S., Liu, B., Shao, W., Mukherjee, A., & Shao, J. (2017). Bimodal distribution and co-bursting in review spam detection. In: Proceedings of the 26th international conference on world wide web (pp. 1063–1072). Geneva: International World Wide Web Conferences Steering Committee.Li, H., Liu, B., Mukherjee, A., & Shao, J. (2014b). Spotting fake reviews using positive-unlabeled learning. Computación y Sistemas, 18(3), 467–475.Li, J., Ott, M., Cardie, C., & Hovy, E. H. (2014c). Towards a general rule for identifying deceptive opinion spam. In: ACL (Vol. 1, pp. 1566–1576).Lin, C. H., Hsu, P. Y., Cheng, M. S., Lei, H. T., & Hsu, M. C. (2017). Identifying deceptive review comments with rumor and lie theories. In: International conference in swarm intelligence (pp. 412–420). New York: Springer.Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled examples. In: Third IEEE international conference on data mining (pp. 179–186). New York: IEEE.Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2002). Partially supervised classification of text documents. ICML, 2, 387–394.Martens, D., & Maalej, W. (2019). Towards understanding and detecting fake reviews in app stores. Empirical Software Engineering,. https://doi.org/10.1007/s10664-019-09706-9.Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781.Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., & Ghosh, R. (2013a). Spotting opinion spammers using behavioral footprints. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 632–640) New York: ACM.Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013b). What yelp fake review filter might be doing? In: Proceedings of the seventh international AAAI conference on weblogs and social media.Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D., & Marchetti, A. (2011). Divide and conquer: Crowdsourcing the creation of cross-lingual textual entailment corpora. In: Proceedings of the conference on empirical methods in natural language processing (pp. 670–679). Stroudsburg: Association for Computational Linguistics.Ott, M., Cardie, C., & Hancock, J. T. (2013). Negative deceptive opinion spam. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 497–501).Ott, M., Choi, Y., Cardie, C., & Hancock, J. (2011). Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual meeting of the association for computational linguistics: human language technologies (pp. 309–319). Portland, Oregon: Association for Computational Linguistics.Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count (LIWC): LIWC2001. Mahwah: Lawrence Erlbaum Associates.Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543).Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., et al. (2010). Learning from crowds. Journal of Machine Learning Research, 11, 1297–1322.Ren, Y., & Ji, D. (2017). Neural networks for deceptive opinion spam detection: An empirical study. Information Sciences, 385, 213–224.Rout, J. K., Dalmia, A., Choo, K. K. R., Bakshi, S., & Jena, S. K. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE Access, 5(1), 1319–1327.Saini, M., & Sharan, A. (2017). Ensemble learning to find deceptive reviews using personality traits and reviews specific features. Journal of Digital Information Management, 12(2), 84–94.Salloum, W., Edwards, E., Ghaffarzadegan, S., Suendermann-Oeft, D., & Miller, M. (2017). Crowdsourced continuous improvement of medical speech recognition. In: The AAAI-17 workshop on crowdsourcing, deep learning, and artificial intelligence agents.Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In: Proceedings of international conference on new methods in language processing. Retrieved from http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-tagger1.pdf.Shehnepoor, S., Salehi, M., Farahbakhsh, R., & Crespi, N. (2017). Netspam: A network-based spam detection framework for reviews in online social media. IEEE Transactions on Information Forensics and Security, 12(7), 1585–1595.Skeppstedt, M., Peldszus, A., & Stede, M. (2018). More or less controlled elicitation of argumentative text: Enlarging a microtext corpus via crowdsourcing. In: Proceedings of the 5th workshop on argument mining (pp. 155–163).Strapparava, C., & Mihalcea, R. (2009). The lie detector: Explorations in the automatic recognition of deceptive language. In: Proceedings of the 47th annual meeting of the association for computational linguistics and the 4th international joint conference on natural language processing.Streitfeld, D. (August 25th25{{\rm th}}, 2012). The best book reviews money can buy. The New York Times.Whitehill, J., Wu, T., Bergsma, F., Movellan, J. R., & Ruvolo, P. L. (2009). Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. Advances in neural information processing systems (pp. 2035–2043). Cambridge: MIT Press.Xie, S., Wang, G., Lin, S., & Yu, P. S. (2012). Review spam detection via temporal pattern discovery. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 823–831). New York: ACM.Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’99 (pp. 42–49). New York: ACM.Zhang, W., Bu, C., Yoshida, T., & Zhang, S. (2016). Cospa: A co-training approach for spam review identification with support vector machine. Information, 7(1), 12.Zhang, W., Du, Y., Yoshida, T., & Wang, Q. (2018). DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network. Information Processing & Management, 54(4), 576–592.Zhou, L., Shi, Y., & Zhang, D. (2008). A Statistical Language Modeling Approach to Online Deception Detection. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1077–1081

    A particle swarm optimizer for multi-objective optimization

    Get PDF
    This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multi-objective optimization problems.Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Multi-objective optimization with a Gaussian PSO algorithm

    Get PDF
    Particle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSOParticle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective problems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems. The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance, an elitist policy, and a shake-mechanism to maintain diversity. In order to validate our algorithm, we use four well-known test functions with different characteristics. Preliminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm representative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a multi-objective PSO based algorithm. The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Particle swarm optimization para un problema de optimización combinatoria

    Get PDF
    En este artículo se presenta una versión del algoritmo de Particle Swarm Optimization que ha sido hibridizado con un operador dinámico de mutación y que implementa el modelo conocido como local best (l-best). El algoritmo se aplica al problema de scheduling de máquina única siendo la función objetivo a optimizar la de Total Weighted Tardiness. El algoritmo propuesto es validado usando instancias tomadas de la OR-Library y los resultados son comparados con los obtenidos por un algoritmo evolutivo multirecombinado que incluye conocimiento acerca del problema y con otra versión de un algoritmo Particle Swarm Optimization que implementa el modelo global best (g-best) cuyos resultados han sido reportados en publicaciones recientes. Los resultados obtenidos son muy promisorios, sobre todo si se considera que este paradigma casi no ha sido utilizado para problemas de optimización combinatoria.Eje: V - Workshop de agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI
    corecore